KNOTTIN: the knottin or inhibitor cystine knot scaffold in 2007
نویسندگان
چکیده
The KNOTTIN database provides standardized information on the small disulfide-rich proteins with a knotted topology called knottins or inhibitor cystine knots. Static pages present the essential historical or recent results about knottin discoveries, sequences, structures, syntheses, folding, functions, applications and bibliography. New tools, KNOTER3D and KNOTER1D, are provided to determine or predict if a user query (3D structure or sequence) is a knottin. These tools are now used to automate the database update. All knottin structures and sequences in the database are now standardized according to the knottin nomenclature based on loop lengths between knotted cysteines, and to the knottin numbering scheme. Therefore, the whole KNOTTIN database (sequences and structures) can now be searched using loop lengths, in addition to keyword and sequence (BLAST, HMMER) searches. Renumbered and structurally fitted knottin PDB files are available for download as well as renumbered sequences, sequence alignments and logos. The knottin numbering scheme is used for automatic drawing of standardized two-dimensional Colliers de Perles of any knottin structure or sequence in the database or provided by the user. The KNOTTIN database is available at http://knottin.cbs.cnrs.fr.
منابع مشابه
KNOTTIN: the database of inhibitor cystine knot scaffold after 10 years, toward a systematic structure modeling
Knottins, or inhibitor cystine knots (ICKs), are ultra-stable miniproteins with multiple applications in drug design and medical imaging. These widespread and functionally diverse proteins are characterized by the presence of three interwoven disulfide bridges in their structure, which form a unique pseudoknot. Since 2004, the KNOTTIN database (www.dsimb.inserm.fr/KNOTTIN/) has been gathering s...
متن کاملInterrogating and Predicting Tolerated Sequence Diversity in Protein Folds: Application to E. elaterium Trypsin Inhibitor-II Cystine-Knot Miniprotein
Cystine-knot miniproteins (knottins) are promising molecular scaffolds for protein engineering applications. Members of the knottin family have multiple loops capable of displaying conformationally constrained polypeptides for molecular recognition. While previous studies have illustrated the potential of engineering knottins with modified loop sequences, a thorough exploration into the tolerat...
متن کاملThe KNOTTIN website and database: a new information system dedicated to the knottin scaffold
The KNOTTIN website and database organize information about knottins or inhibitor cystine knots, small disulfide-rich proteins with a knotted topology. Thanks to their small size and high stability, knottins provide appealing scaffolds for protein engineering and drug design. Static pages present the main historical and recent results about knottin discoveries, sequences, structures, folding, f...
متن کاملFunctional Mutation of Multiple Solvent-Exposed Loops in the Ecballium elaterium Trypsin Inhibitor-II Cystine Knot Miniprotein
BACKGROUND The Ecballium elaterium trypsin inhibitor (EETI-II), a 28-amino acid member of the knottin family of peptides, contains three interwoven disulfide bonds that form multiple solvent-exposed loops. Previously, the trypsin binding loop of EETI-II has been engineered to confer binding to several alternative molecular targets. Here, EETI-II was further explored as a molecular scaffold for ...
متن کاملIdentification and Characterization of Roseltide, a Knottin-type Neutrophil Elastase Inhibitor Derived from Hibiscus sabdariffa
Plant knottins are of therapeutic interest due to their high metabolic stability and inhibitory activity against proteinases involved in human diseases. The only knottin-type proteinase inhibitor against porcine pancreatic elastase was first identified from the squash family in 1989. Here, we report the identification and characterization of a knottin-type human neutrophil elastase inhibitor fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 36 شماره
صفحات -
تاریخ انتشار 2008